Prefabricated High-Strength Rebar Systems with High-Performance Concrete for Accelerated Construction of Nuclear Concrete Structures

University of Notre Dame

Robert D. Devine¹

Yahya C. Kurama,² Ph.D., P.E.

Ashley P. Thrall,² Ph.D.

Steven M. Barbachyn,³ M.S.C.E.

Max Ducey⁴

Madalyn Sower⁴

Sandia National Laboratories Scott Sanborn,⁵ Ph.D. AECOM

Matthew Van Liew,⁶ P.E.

¹Ph.D. Student, ²Co-Principal Investigator, ³Post-Doctoral Researcher ⁴Undergraduate Researcher, ⁵Senior Technical Staff Member, ⁶Structural Engineer

Today's Objective

- Provide an overview of our newly started project
- Receive your feedback on proposed research

Outline

- A) Objectives and Vision
- B) Scope
- C) Background
- D) Project Tasks
- **E) Questions and Commentary**

Outline

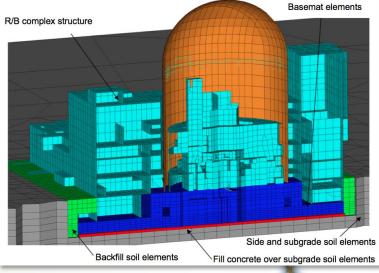
A) Objectives and Vision

- **1. Project objectives**
- 2. Project vision
- **3. Potential benefits**
- B) Scope
- C) Background
- D) Project Tasks
- **E) Questions and Commentary**

A.1 Project Objectives

Reduce field construction times and fabrication costs of reinforced concrete nuclear structures through:

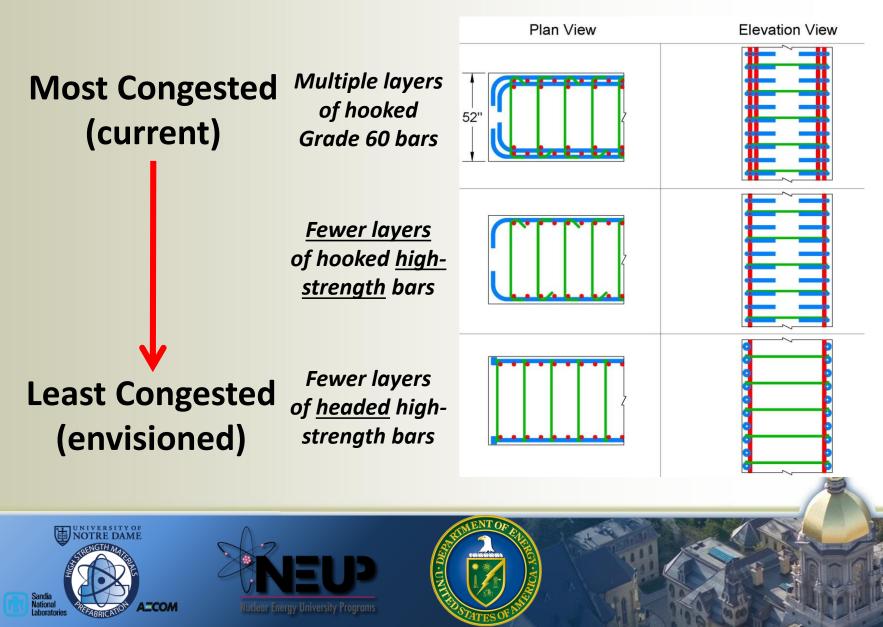
1) High-strength rebar


2) Prefabricated rebar assemblies, including headed anchorages

3) High-strength concrete

A.2 Project Vision

- Explore effectiveness, code conformity, and viability of <u>existing</u> high-strength materials
- Focus on <u>shear walls</u> most common lateral load resisting members in nuclear structures (pressure vessels not in scope)
- Aim to reduce <u>complexities in</u> <u>rebar</u> to improve construction quality and ease of inspection



US-APWR Design Control Doc.

A.3 Potential Benefits

Outline

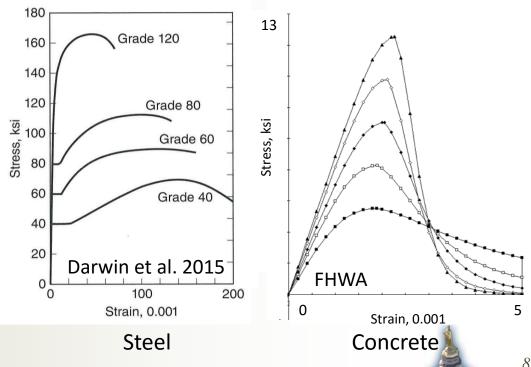
A) Objectives and Vision

B) Scope

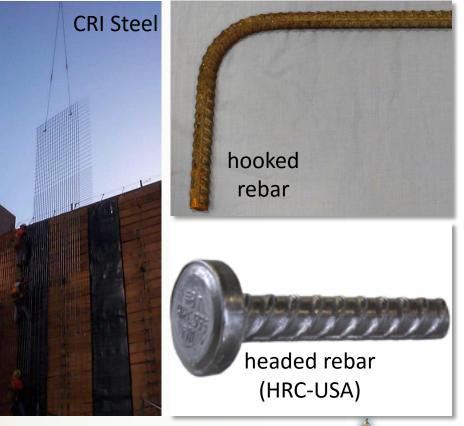
1. High strength materials

- 2. Prefabricated cages
- C) Background
- D) Project Tasks

E) Questions and Commentary



B.1 Scope: High Strength Materials


- High-strength rebar (up to grade 120) with highstrength, high durability concrete (around 15 ksi)
- Concrete strength of 5 ksi typical in current practice
- ACI 349 limits headed bars and shear reinforcement to grade 60

B.2 Scope: Prefabricated Rebar Assemblies

- Partially prefabricated cages for nuclear structural members (e.g., thick shear walls, slabs)
- Headed bars to reduce congestion (eliminates hooked bars)

Outline

- A) Objectives and Vision
- B) Scope
- C) Background
 - **1. High strength material advances**
 - 2. High strength material gaps
 - **3. Nuclear shear wall advances & gaps**
- D) Project Tasks
- **E) Questions and Commentary**

C.1 High Strength Material Advances

- Steel Advances
 - Material properties (NEHRP, 2014)
 - Analytical studies on buildings (Price et al., 2013)
 - Hooked anchorages (Darwin, 2015)
- Concrete Advances
 - Workable UHPC with $f'_c = 22$ ksi (Mo et al., 2015)
 - Increased durability using substitute cementitious materials

C.2 High Strength Material Gaps

 Interaction between high strength rebar and high strength concrete

- High strength rebar with heads
- Partially prefabricated rebar assemblies

C.3 Nuclear Wall Advances & Gaps

- Advances
 - Nuclear shear walls with high strength materials (Ishimura et al., 1995)
 - Low- and mid-rise building walls with high strength materials (Kabeyasawa et al., 1998)
 - Low-rise shear walls (Gulec et al., 2011; Luna et al., 2015)
 - Nuclear walls with grade 80 rebar (Park et al., 2015)

nergy University Programs

- Gaps
 - Research on walls reinforced with grade 100 and 120 rebar with reinforcement ratios typical to nuclear structures

Outline

- A) Objectives and Vision
- B) Scope
- C) Background
- D) Project Tasks
 - **1. Pre-test analytical study**
 - 2. Prefab rebar cages
 - **3. Optimization, modeling, and design**
 - 4. Experimentation
 - **5. Recommendations**

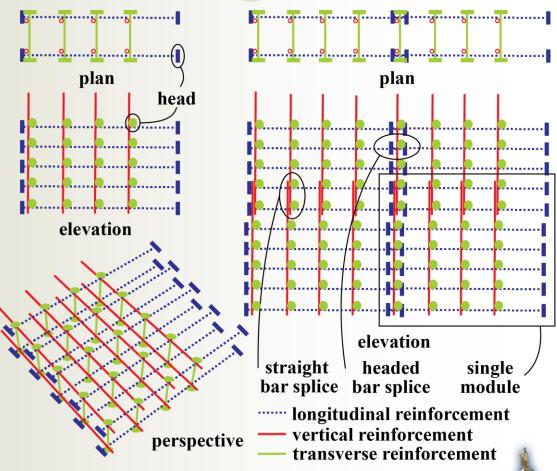
E) Questions and Commentary

D.1 Pre-test Analytical Study

Analytical study on limits/benefits, to:

- Establish effects of high-strength materials on structural deformation capacities
- Establish required concrete strengths so that use of high-strength rebar does not cause poor concrete performance

15


- Determine reduction in steel volumes
- Inform subsequent tasks of project

ergy University Programs

OTRE DAME

D.2 Prefab Rebar Cages

- Evaluate prefab headed rebar cages for:
 - transportability
 - liftability
 - modularity
- Develop field procedures

D.3 Optimization, Modeling, Design

 Develop optimization procedure to select materials and prefabrication solutions for:

- minimum fabrication cost
- minimum in-situ rebar cage assembly time
- Basic (design-level) and detailed (high-fidelity) numerical modeling
- Design of prototypes
- Pre-test design and analytical predictions

D.4 Material Testing

- ASTM tests for concrete and rebar materials
- Rebar grades 100 & 120
- Preliminary mix designs 5 to 17 ksi

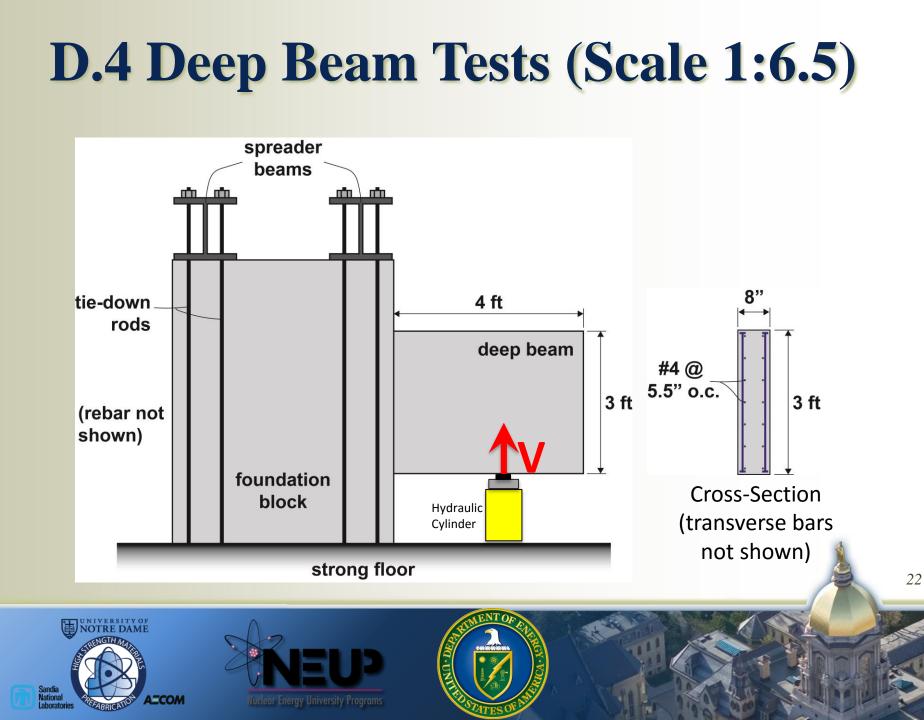
D.4 Material Testing

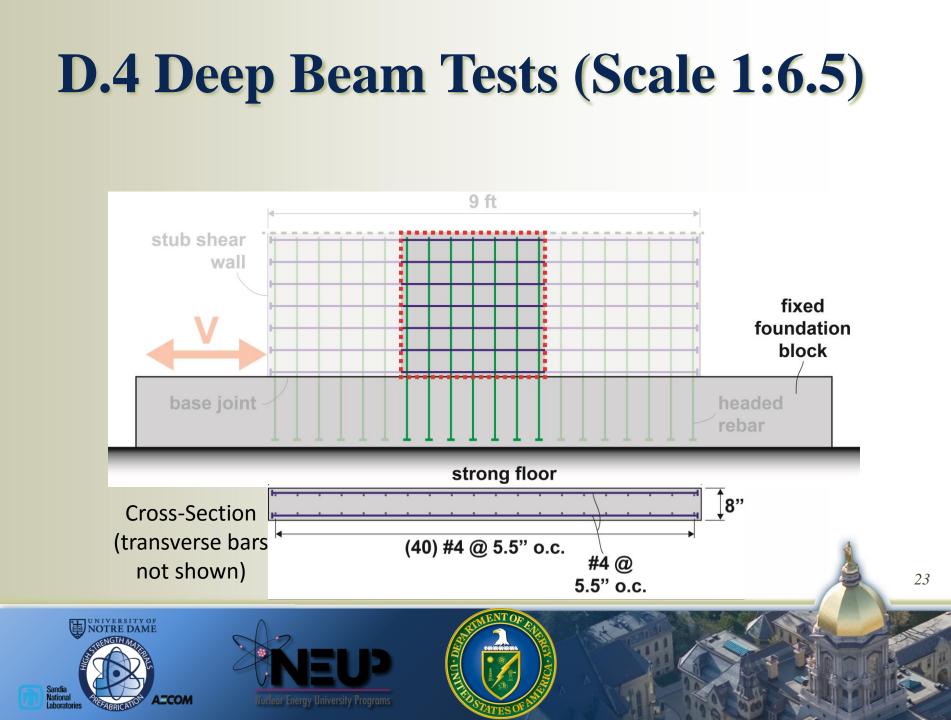
Constituents	5 ksi	10 k si	17 k si
PC Type II (lb/yd ³)	615	892	950
Fly Ash (lb/yd³)	-	82	50
Silica Fume (lb/yd³)	-	-	90
Coarse Aggregate Crushed Limestone (lb/yd ³)	1610	1730	1830
Fine Aggregate (lb/yd³)	1510	927	1300
Water (lb/yd³)	323	369	255
Water/Binder Ratio	0.53	0.38	0.23
Superplasticizer (fl. oz./cwt)	4.91	-	36
Slump (in.)	-	-	8+
Actual 28 Day Strength (ksi)	5.20	10.2	17.3

D.4 Deep Beam Tests (Scale 1:6.5)

 Vary multiple characteristics on a representative wall <u>slice</u> to aid design of subsequent specimens

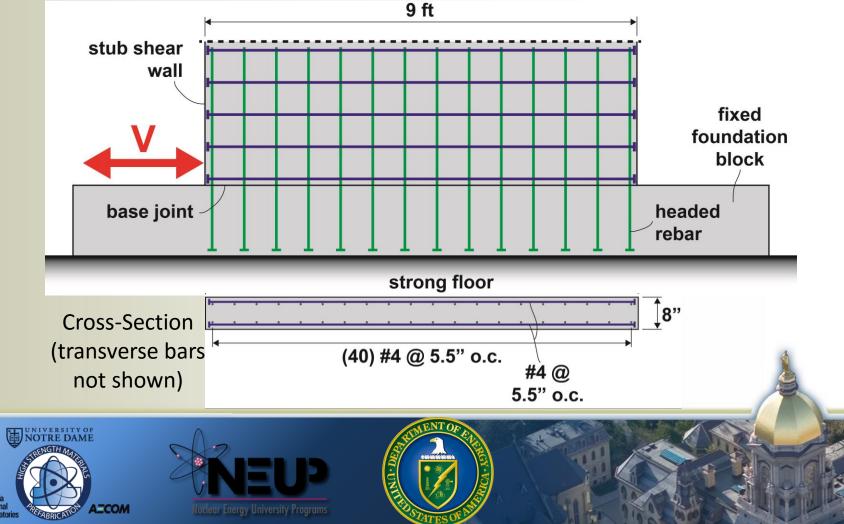
Variables	Proposed Values
f' _c (ksi)	5 (control), 10, 17
f _y (ksi)	60 (control), 100, 120
Reinforcement Ratio (%)	0.45 (TBD), 0.9, 1.3, 1.8
Moment to Shear Ratio (M/V*L)	0, 0.25, 0.5, 1, 1.25

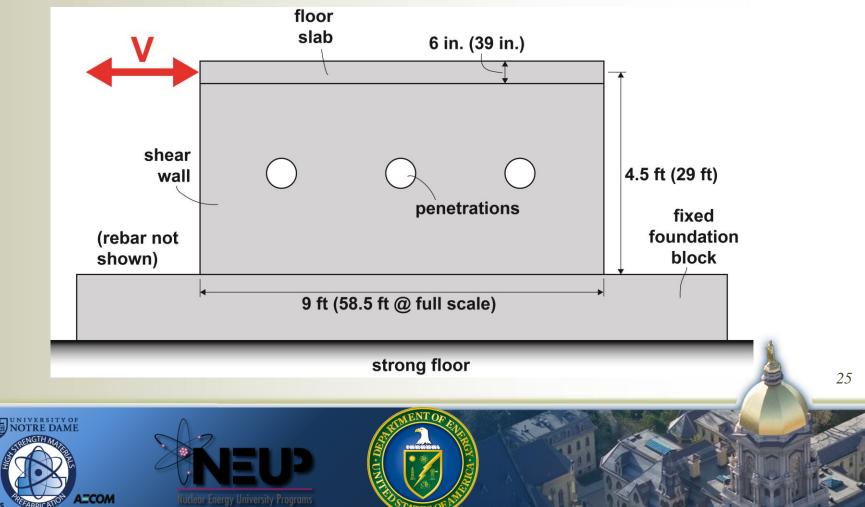



D.4 Deep Beam Tests (Scale 1:6.5)

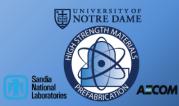
Initial Proposed Specimens

f' _c (ksi)	f _y (ksi)	Reinforcement Ratio (%)	M/V*L
5	60	0.9	0.5
5	60	1.8	0.5
5	120	0.9	0.5
5	120	0.45 (TBD)	0.5




D.4 Stub Wall Tests (Scale 1:6.5)

• Shear-wall-to-foundation joints under pure shear to establish shear friction strength


D.4 Wall Panel Tests (Scale 1:6.5)

- Representative wall panels under moment+shear
- Includes thermal loads to explore thermal cracking

D.5 Recommendations

- Design, modeling, and construction recommendations on:
 - Appropriate high-strength materials
 - Prefabricated headed rebar assemblies
 - Basic (design-level) and detailed (high-fidelity) models
 - Optimization for minimum cost/construction time
 - Assumptions/approximations for design and analysis
 - Effective field methods for concrete/rebar placement
- Design Procedure Document

Feedback

http://phsrc-nuclearwalls.nd.edu

